Bound auxin formation in growing stems.

نویسنده

  • P J Davies
چکیده

The term "bound auxin" is herein used to describe auxin conjugates insoluble in organic solvents which dissolve indoleacetic acid (IAA) and its derivatives, but hydrolyzable by NaOH to release IAA. Bound auxin from pea stems was fractionated into water-soluble, water-insoluble/NaOH-hydrolyzable, and insoluble components. Formation of bound auxin commenced with 15 minutes of applying exogenous labeled IAA, and progressively increased in amount, relative to IAA uptake, over 6 hours. Formation was not restricted to any particular zone of the stem and occurred in both light- and dark-grown stems. A greater quantity of bound auxin was formed in light-grown stems, reaching 4.2 and 7.7%, of the IAA taken up, in the water-soluble and water-insoluble/NaOH-hydrolyzable fractions after 6 hours. The presence of sucrose, during either the IAA treatment or an aging pretreatment had no effect, though 6 hours aging did cause a subsequent increase in the water-insoluble fraction of the bound auxin. Bound auxin formation in light-grown stems was dependent on respiratory metabolism, being reduced by KCN. It was also reduced, compared to total uptake, by inhibitors of RNA, and protein synthesis (6-methylpurine and cycloheximide) but only when the inhibitors preceded auxin addition and were present for a 4-hour period. Addition of inhibitors following auxin had no effect, suggesting an early inductive effect of auxin on bound auxin formation. Inhibitors of cell elongation had no effect. Deoxyglucose, an inhibitor of glucan synthesis, had only a small effect on the water-soluble fraction. Bound auxin is an important auxin product in growing plants. Its function is unknown, but some possibilities are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyribosomes from Peas: VI. Auxin-stimulated Recruitment of Free Monosomes into Membrane-bound Polysomes.

Auxin treatment of aged pea stems (Pisum sativum L. var. Alaska) caused a decrease in monosomes (especially free monosomes) and an increase in polysomes (especially membrane-bound polysomes). These effects were not duplicated by gibberellic acid or benzyladenine. These auxin-stimulated shifts in polysome distribution commenced at least 9 hours before significant growth took place. It is suggest...

متن کامل

Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems

Differential organ growth during gravitropic response is caused by differential accumulation of auxin, that is, relative higher auxin concentration in lower flanks than in upper flanks of responding organs. Auxin responsive reporter systems such as DR5::GUS and DR5::GFP have usually been used as indicators of gravitropic response in roots and hypocotyls of Arabidopsis. However, in the infloresc...

متن کامل

Transformation of the collateral vascular bundles into amphivasal vascular bundles in an Arabidopsis mutant.

Arabidopsis inflorescence stems develop a vascular pattern similar to that found in most dicots. The arrangement of vascular tissues within the bundle is collateral, and vascular bundles in the stele are arranged in a ring. Although auxin has been shown to be an inducer of vascular differentiation, little is known about the molecular mechanisms controlling vascular pattern formation. By screeni...

متن کامل

Osmotic properties of pea internodes in relation to growth and auxin action.

The water transport properties of etiolated pea (Pisum sativum L.) internodes were studied using both dynamic and steady-state methods to determine (a) whether water transport through the growing tissue limits the rate of cell enlargement, and (b) whether auxin stimulates growth in part by increasing the hydraulic conductance of the growing tissue.Measurements using the pressure probe technique...

متن کامل

An Auxin-Responsive Promoter Is Differentially Induced by Auxin Gradients during Tropisms.

We constructed a chimeric gene consisting of a soybean small auxin up RNA (SAUR) promoter and leader sequence fused to an Escherichia coli [beta]-glucuronidase (GUS) open reading frame and a 3[prime] untranslated nopaline synthase sequence from Agrobacterium tumefaciens. This chimeric gene was used to transform tobacco by Agrobacterium-mediated transformation. In R2 etiolated transgenic tobacco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 1976